
Service Discovery and Component Reuse with
Semantic Interfaces

Richard T. Sanders1, Rolv Bræk2, Gregor von Bochmann3, and Daniel Amyot3

1 SINTEF ICT,
NO-7465 Trondheim, Norway
Richard.Sanders@sintef.no
2 Department of Telematics

Norwegian University of Science and Technology
NO-7491 Trondheim, Norway
rolv.braek@item.ntnu.no

3 SITE, University of Ottawa
800 King Edward,

Ottawa (ON) Canada, K1N 6N5
{bochmann, damyot}@site.uottawa.ca

Abstract. Current trends in distributed computing and e-business pro-
cessing suggest that many applications are evolving towards Service Ori-
ented Computing (SOC) with technologies such as Web services. Services
are autonomous platform-independent computational elements, and we
observe an increasing need for core SOC technologies for dynamic dis-
covery, selection, and composition of services. However, such technologies
are often based on syntactic descriptions of the services and of their in-
terfaces, which are insufficient to ensure that desired liveness properties
are satisfied. In this paper, we propose an approach for the descrip-
tion, discovery, and selection of services based on role modeling and
goal expressions that enables the definition of semantic interfaces and
the evaluation of liveness properties. The same mechanisms also enable
component reuse. We discuss how UML 2.0 can support the modeling of
both the services and the desired properties. The approach is illustrated
with telephony services.

1 Introduction

Many emerging distributed applications, platforms, and architectures, such as
Web services and grid architectures, attempt to take advantage of the concept of
service. A service is an autonomous platform-independent unit of work done by
a provider to achieve desired end results for a consumer. The purpose of increas-
ingly popular Service-Oriented Architectures (SOA) is often to promote the use
and reuse of application-neutral services and components, and to achieve loose
coupling between the participating entities. Such architectures contain three
main parts: a provider, a consumer, and a registry. Providers publish or an-
nounce their services on registries, where consumers find and then invoke them.
To support such Service-Oriented Computing, several protocols and languages



have been developed to characterize, register, discover, invoke, and compose ser-
vices [16].

Of particular interest is the problem of selecting a service that can inter-
operate with a client application and that can meet the desired goals of the
collaboration. As we move toward open environments where anyone can wrap
existing functionalities or create new ones and then offer them as remote services,
being able to select the most appropriate service (if any) becomes imperative.
Current enabling technologies are often based on syntactic descriptions of the
services and of their interfaces. For example, the Web-Service Description Lan-
guage (WSDL) uses ports, operations, and message types to define the abstract
interface and protocol bindings of a service [17]. A UDDI registry catalogs such
service characteristics, together with business and category information [13].
Other service discovery protocols (e.g., SLP, SDP, Jini, Salutation, and UPnP)
describe services with identifiers, types, attributes (including some quality of
service), and/or static interfaces [3]. We believe such descriptions to be insuffi-
cient to ensure that liveness properties (the collaboration goals) desired by the
service customer are satisfied. A discovered service may offer the required static
interface but may not be able to achieve the desired goals; it should then not be
selected.

To tackle this problem, we propose an approach for the description, discov-
ery, and selection of services based on role modeling and simple goal expressions
that enables the definition of semantic interfaces and the evaluation of liveness
properties. These mechanisms are generic enough to address the related issue of
component reuse. Section 2 presents how UML 2.0 [14] can support the model-
ing of both the services and the desired properties. Typical usages of semantic
interfaces are discussed in Section 3. The approach is illustrated with telephony
services, but is not limited to the telecommunication domain. Our conclusions
follow.

2 Semantic Interfaces

2.1 Distributed Systems Architecture

Fig. 1 suggests an architecture for service-oriented systems which is characterized
by horizontal and vertical decomposition. On the horizontal axis, several com-
putational object (actors) are identified that may reside in different computing
environments. This axis represents the physical and logical distribution of the
system. On the vertical axis, several services are identified that are provided by
the distributed systems. In the simplest situation, these services are provided
independently of one another. In practice, however, there are usually constraints
relating to resources of an actor that are shared by the components involved in
the different services, which leads to dependencies between the different services.

The main concern in this paper is the compatibility of the different service
components involved in the provisioning of a given service. (We note that one or
several of these components may constitute a user agent). In the following, we



Actor1 Actor2 Actor3 Actor4 Actor5Actor1 Actor2 Actor3 Actor4 Actor5

Service 3Service 3

Service 2Service 2

Service 1Service 1

Horizontal 
composition
(within a service)

Vertical composition (within an actor)

Service
component

Fig. 1. Two-dimensional view of a Service-Oriented Architecture

call these service components simply “components”. Typically, each component
interacts with several other components within the same horizontal service. For
a given component, we identify a number of interfaces, one for each other com-
ponent with which it cooperates. Fig. 2 shows an example of two components,
CA and CB, each having two interfaces, and where the two components interact
with one another through the interfaces A and B, respectively.

CA CBA B

session

Fig. 2. Two interacting components with two interfaces each

The figure also indicates that messages are exchanged between these two
components. What is labeled session in the figure, actually represents the col-
laboration between these two components. Different graphical notations have
been proposed in UML for representing collaborations [14]. In this article, we
consider the description of collaboration behaviors at different levels of abstrac-
tion. At the highest level, we use UML activity diagrams which only represent
the order in which certain phases of the service collaboration proceeds. If we
want to describe globally the messages exchanged during a collaboration, we use
UML interaction diagrams. These two descriptions are not necessarily complete;
they typically concentrate on certain use cases. For a complete description of a
collaboration, we consider first the state machine description of the behavior of
each of the components. Since such a component behavior description includes all
interactions of the given component over all interfaces, it is more complex than
required, if we are only interested in the collaboration of the component over



a specific interface. Therefore we also consider the projection of the component
behavior over a given interface, which we call the interface role behavior of the
given component. It is the behavior it exhibits over the interface where it plays
a particular role in the collaboration.

We use in the following the term semantic interface to denote a collaboration
including the role behavior of the participating components and the progress
goals (see below) that should be reached by the collaboration.

Note that this approach is not bound to UML: activity diagrams could be re-
placed with Use Case Maps (UCM), interaction diagrams with Message Sequence
Charts (MSC), and state diagrams with the Specification and Description Lan-
guage (SDL).

2.2 A Simple Example

We consider the following simple example from telephony in order to explain
the concepts introduced in this paper. The telephony service involves two com-
ponents, the user agent of the calling user, named A, and the user agent of
the called user, named B. The diagram of Fig. 3 shows the structural aspect of
this collaboration; only the interfaces between these two components are shown,
not the interfaces with their respective terminals and users. The diagram also
shows a progress goal that should be reached by the collaboration: The system
should reach a global state where VoiceCnt(A, B) is true, that is, A has a voice
connection to B and B has a voice connection to A.

A:Caller B:Callee

UserCall

{ goal: VoiceCnt(A,B)=A.VoiceCntTo(B) and B.VoiceCntTo(A)}

Fig. 3. The UserCall collaboration structure

We consider that a UserCall collaboration may involve the following phases:
Invite, Calling, and Busy, as shown in the activity diagram of Fig. 4. This is a
very basic behavior that may be enriched with more service features as will be
illustrated in Section 3.



UserCall

Calling
{goal:

VoiceCnt(A,B)}

Invite

Busy

Fig. 4. Phases of the UserCall collaboration

The following sequence diagrams give more details about these phases. They
show the overall sequencing of the phases, similar to the activity diagram above
as well as the interactions leading up to the connected state. Reaching the con-
nected state is clearly a goal for the UserCall service, and this is represented by
the goal expression goal: VoiceCnt(A,B) where VoiceCnt(A,B) is a predicate over
properties of the two participating roles A and B, for instance:

VoiceCnt(A,B) = A.VoiceCntTo(B) and B.VoiceCntTo(A)

In order to keep the example simple, we only show a basic call handling
service with one feature, WaitOnBusy, in Fig. 5. Using the same general approach
a much richer set of features can be designed.

Finally, the two state transition diagrams in Fig. 6 show the role behavior
of the two collaborating components in a featureless basic call service. Since
only one interface is considered for each component so far, the role behavior
at these interfaces is identical to the overall behavior of these components. In
these diagrams, we have omitted behavior needed to resolve conflicts in the case
of initiative collisions which may occur in states with both input and output
transitions (called mixed initiative states in [5,8]). In reality, the role behaviors
must be extended to include behavior for resolving such conflict situations (e.g.,
see the work of Gouda [9] and Floch [8]).

It should be noted here that the diagrams in Fig. 6 define what we call the
semantic interface of the UserCall collaboration. In addition to defining the static
interface in terms of the signal types interchanged in each direction (not explic-
itly shown here), it also defines the interface behavior in terms of sequences of
interactions and the goals in terms of predicates specifying properties of desirable
states and events.



A:Caller B:Callee

sd UserCall

ref Invite

Callingref

ref Busy

alt

A:Caller B:Callee

sd Invite

Invite (A, role) 

A:Caller B:Callee

sd Calling

Alerting

Reply (options)

EndReq

connected
{goalVoiceCnt(A,B)} 

EndCnf

EndReq
EndCnf

alt

A:Caller B:Callee

sd Busy

Busy(BusyOptions)

Wait

ref WaitOnBusy

alt

Callingref

ref End

ref End

sd End

A:Caller B:Callee

Fig. 5. UserCall interactions

2.3 Criteria for Component Reutilization and Service Discovery

To set the stage for the following discussion, we consider two situations where it is
important to compare different component specifications and implementations:

1. We consider the following scenario of service discovery (refer to Fig. 2): A
component CA is given; and we are looking for a “service” that presents an
interface similar to the one presented by component CB, such that CA and
CB may perform a collaboration similar to the one described above.

2. We consider a scenario of component reuse, where during system design we
identify a system component C with a given requirements specification SC .
Now we are looking for an existing implementation I that could be used as
component C in the implementation of the system.



Inviting

?Alerting
?Busy(BusyOptions)

Alerting

?Reply

?EndCnf

!EndReq

!Invite(A, Role)

Connected
{goal: 

VoiceCntTo(B)}

disconnect
Forward

!EndReq?EndReq

!EndCnf

end
Forward

SelectBusy
Action

disconnect
Backward

Idle

Idle

!EndReq

?EndCnf

Inviting

!Alerting
!Busy(BusyOptions)

Alerting

!Reply

!EndCnf

?EndReq

?Invite(A, Role)

Connected
{goal: 

VoiceCntTo(A)}

disconnect
Forward

?EndReq!EndReq

?EndCnf

end
Forward

SelectBusy
Action

disconnect
Backward

Idle

Idle

?EndReq

!EndCnf

UserCall::Caller UserCall::Callee

A:Caller B:Callee

UserCall

{goal: VoiceCnt(A,B) = A.VoiceCntTo(B) and B.VoiceCntTo(A)}

Fig. 6. A semantic interface with a goal and interface role behaviors

We assume in the following that a requirements specification S is given in the
form of some logical predicate that must be satisfied by the implementation. This
predicate may define a state machine, or it may be of a more general form. We
also assume that each implementation I can be described by a logical predicate
PI that characterizes all the properties of the implementation. Then we have the
following lemmas/definitions:

Lemma 1 (Conforming implementation). An implementation I conforms
to the requirements S if PI ⇒ S (logical implication).

Lemma 2 (Specialization). A specification S′ is a specialization of another
specification S if S′ ⇒ S. (One also says that S′ is a subtype of S).

Lemma 3 (Reuse of a component). An implementation I that conforms to
the requirements S′ can be reused as an implementation for a component that
must satisfy the specification S, if S′ ⇒ S.



A requirement has often the form of an implication: If certain assumptions
about the environment of the component are satisfied then the component will
have to satisfy certain guaranteed properties [1]. We therefore assume that a re-
quirements specification is given the form S = (As ⇒ GP ), where As represents
the assumptions and GP the guaranteed properties. Then we can say that S′

is a specialization of S if (As′ ⇒ GP ′) ⇒ (As ⇒ GP ) which is equivalent to
(As ⇒ As′) ∧ ((As ∧GP ′) ⇒ GP ) ∨ (¬(As ⇒ As′) ∧GP ). This means that S′

is a specialization of S if, and only if, the assumptions of S′ are weaker than or
equal to those of S and the guarantees of S′ (when the assumptions of S are
satisfied) are stronger than or equal to those of S, or the guarantees of S are
satisfied independently of any other assumptions.

We note that component requirements can usually be divided into structural
(static) properties and dynamic properties that relate to the dynamic behav-
ior of the component. The following paragraphs discuss shortly the structural
properties; aspects related to the dynamic behavior are discussed in the next
subsection.

Definitions of interfaces (in the sense of object-oriented languages or SDL
channels) represent structural properties. An interface definition states what
kind of methods must be provided by a class (a guarantee provided by the
component); it also states that the component may make the assumption that
the environment will not try to call a method that is not defined. The latter
assumption is usually checked by the compiler according to the type checking
rules of the language.

The declaration of the type of a parameter in an input message for a given
component specification represents the assumption that the environment will
only provide input parameters of the specified type. Conversely, the declaration
of the type of a parameter in an output message (or return value of a method call)
represents a guarantee to be provided by the component that only values of that
type should be presented in the output message. Together with the definition of
specialization given above, this leads to quite general type checking rules, as for
instance defined for the Emerald language [2].

2.4 Formalizing Safety and Liveness Properties of Collaborations

Subtyping of State Machines. We assume in the following that the dynamic
behavior of a component is specified in the form of a (deterministic) finite state
machine where each transition is either associated with an input or an output.
We also assume that the specification of the static structure defines the set
of input and output interactions that may occur at each of the interfaces of
the component. Assuming that a state machine specification only defines safety
properties of the component (we will discuss liveness properties later in this
section), we interpret a given state machine specification for a component C as
follows:

1. If the component produces an output, then the state machine has an output
transition with this output as label from the current state of the component.



When doing the output, the component enters the new state defined by that
transition. This is in fact a guarantee that any produced output is one of
those allowed by the specification.

2. If the component receives an input, it will enter a new state as defined by
the transition (from its current state) labeled by this input. The specifica-
tion makes in fact the assumption that only inputs that are defined for the
current state in the specification will be produced by the environment of the
component.

Based on this interpretation of state machine specifications, we note that a
state machine specification S′, which is obtained from a given specification S by
adding some additional input transitions, has weaker assumptions than S and
defines therefore a subtype behavior of S. Note that a new input transition may
lead to an existing state or a new state; additional input and output transitions
may be added from the new states while keeping the subtyping relationship. We
call this form of subtyping extension, indicated by the label “ext” in the UML
icon for inheritance (see Fig. 8). The diagram in Fig. 7 provides an example
where the CalleeW role is an extension of the Callee role from Fig. 6.

Similarly, if S′ is obtained from S by removing some output transitions,
then S′ defines a subtype behavior of S. In this case, some liveness properties
may get lost, because the subtype restricts the interaction possibilities. We call
this form of subtyping reduction, indicated by the label “red” in the UML icon
for inheritance. (This is similar to the reduction of nondeterminism considered
in [6]). As an example, the Caller role in Fig. 6 is a reduction of the CallerW role
in Fig. 7.

Safety Compatibility Requirements for Collaborations. We now con-
sider that a component CA should collaborate with a component CB, as shown
in Fig. 2. If we are only interested in the compatibility of these two compo-
nents for the interactions taking place over the common interface, we first can
make abstraction of the interaction of these components over other interfaces.
This operation of abstraction is often called projection and consists of hiding
all interactions that do not occur over the interface of interest. This projection
operation, applied to the state machine S defining the overall behavior of the
component, leads in general to a nondeterministic machine. We assume in the
following that the well-known determination algorithm ([10], which is of expo-
nential complexity) has been applied in order to obtain a deterministic state
machine ProjIF (S) showing the behavior of the component S at the interface
IF of interest.

We now consider the collaboration between the components CA and CB with
specifications SA and SB, respectively. We note that compatibility between CA
and CB means that CA only sends interactions to CB that CB can handle in its
current state, and inversely, that CB only sends interactions to CA that CA can
handle in its current state. In other words, the guarantees of ProjIF (SA) imply
the assumptions of ProjIF (SB), and the guarantees of ProjIF (SB) imply the
assumptions of ProjIF (SA).



Inviting

?Alerting
?Busy(BusyOptions)

Alerting

?Reply

?EndCnf

!EndReq

!Invite(A, Role)

Connected
{goal: 

VoiceCntTo(B)}

disconnect
Forward

!EndReq?EndReq

!EndCnf

end
Forward

SelectBusy
Action

Waiting
{goal:

WaitForFree(B)}
?Alerting

!wait

disconnect
Backward

Idle

Alerting

Idle

!EndReq

!EndReq

?EndCnf

end
Forward

Inviting

!Alerting
!Busy(BusyOptions)

Alerting

!Reply

!EndCnf

?EndReq

?Invite(A, Role)

Connected
{goal: 

VoiceCntTo(A)}

disconnect
Forward

?EndReq!EndReq

?EndCnf

end
Forward

SelectBusy
Action

Waiting
{goal:

CallInQueue(A)}
!Alerting

?wait

disconnect
Backward

Idle

Alerting

Idle

?EndReq

?EndReq

!EndCnf

end
Forward

UserCallW::CallerW UserCallW::CalleeW

AW:CallerW BW:CalleeW

{goal: VoiceCnt(A,B) or Waiting(A,B)}
{WaitiOnBusy(A,B) = A.WaitForFree(B) and B.CallInQueue(A)}

UserCallW

Fig. 7. Semantic interface for UserCallW: UserCall with WaitOnBusy feature added

We now may make the assumption that the interactions over the interface
are immediate, that is, an output interaction generated by one component is
immediately consumed as input by the other component, without any interme-
diate queuing. We call such an interface a direct coupling interface. Although
not very realistic for distributed systems, this kind of interface is used for many
theoretical models, e.g., Input/Output Automata [11]. It has the advantage that
no cross-over of messages in opposite directions may occur over the interface.

Lemma 4. Given a component CA with dynamic behavior ProjIF (SA) over
the interface IF , the most general (in the sense of our specialization relation)
behavior at the interface for the collaborating component CB is given by the
state machine obtained from ProjIF (SA) by exchanging for each transition the
direction of interaction (replace input by corresponding output or output by cor-
responding input). See for instance the work of Gouda [9] or Drissi [7].



In the more realistic case where outputs are queued within the communica-
tion medium before they are consumed as input by the destination component,
the compatibility conditions are more complex because messages may cross over
within the medium and the order of inputs and outputs occurring at one com-
ponent may be different than the order of the corresponding outputs and inputs
at the other components. Gouda [9] and Floch [8] propose some interesting ap-
proaches for deriving a most general behavior at the interface for a component
CB collaborating with a given component CA.

Considering Liveness Properties in Collaborations. While safety talks
about constraints that must be satisfied for any valid execution sequence that
may occur, liveness properties talk about certain progress that should be made
or states that should be reached. Various approaches have been proposed for
describing liveness (or progress) properties. We propose in this paper the notion
of a goal which is a predicate on the local or global state space of the system.
We say that a system satisfies a given goal G if one of the execution paths of the
system leads to a state s for which G(s) is true. This is equivalent to a statement
in branching time temporal logic saying that there exists a branch that leads
eventually to a state for which G holds. In general, the requirements of a given
system may include several goal predicates that should be reachable. If a single
state should be reachable that satisfies a set of goals G1, . . . , Gn simultaneously,
this can be expressed by a new goal of the form G = G1 ∧ . . . ∧Gn.

In the example of the telephone system presented previously, the activity
diagram of Fig. 4 contains the mention goal: VoiceCnt(A,B) for the activity
Calling. This means that the Calling phase should be reachable, while the text
VoiceCnt(A,B) has no formal meaning at this point. In Fig. 5, the location of this
goal (within the reachable global state space) is further refined. Also, in Fig. 6,
the same goal is described from the point of view of one of the components par-
ticipating in the collaboration; here we see that a particular state of the state
machine should be reachable. The additional predicate VoiceCntTo(B) may be
evaluated within the component A by referring to additional variables not shown
in the diagram.

As mentioned earlier in this section, when one replaces, within a given system,
a component A with behavior S by another component A’ with behavior S′ where
S′ is a subtype of S, it could be that certain global (and local) states that were
reachable with S are not reachable anymore with S′ (except in the case when S′ is
a pure extension of S). If such states are associated with goals, these goals would
not be reachable anymore. We conclude that the definition/lemma (3) mentioned
in Section 2.3 must be revised by indicating that the relationship S′ ⇒ S implies
that there is no problem for reuse as far as safety properties are concerned, but
there may be a problem concerning progress, unless the subtype relationship is
a pure extension. We do not know of any general rule for solving this dilemma,
however, we know that the relevant progress properties may possibly not be
satisfied by the replacement component S′. These progress properties should



therefore be checked. This could be done by performing a reachability analysis
of the collaboration in question.

We conclude this section by noting that the compatibility of two components
participating in a collaboration over a given interface has two aspects: safety
properties and progress properties. These properties can be checked by consider-
ing the role behavior of the components which is the behavior of the components
projected onto the collaboration interface. Safety compatibility means that any
output produced by one component is acceptable by the other component when
it is received as input. In the case of interfaces without any message transfer
delay (excluding cross-over of messages) this relationship is easily checked by
comparing the respective role behaviors. In the case of message delays over the
interface, the verification of compatibility is much more complex, and can for
instance be solved by reachability analysis, which however may involve arbitrar-
ily long message queues. The safety-oriented subtyping relationship of dynamic
behaviors is useful for deciding these compatibility questions.

We introduce in this paper a notation for specifying progress properties of
collaborations. It is important to note that they are not implied by the behavior
specifications that are commonly represented by finite state machines or other
similar formalisms. We show in this paper how progress properties can be taken
into account during the definition of collaborations and for identifying compo-
nents that are compatible with a given component, not only as far as safety is
concerned, but also concerning the progress properties.

3 Using Semantic Interfaces

3.1 Service and System Composition

We assume now that each component type may have a number of interfaces,
and that each interface is defined (typed) by referring to a semantic interface.
Safety and liveness properties may be analyzed once for each semantic interface
as explained in Section 2. This analysis needs not be repeated for each com-
ponent, but it is necessary to check for each component type that its behavior
is consistent with the role behaviors attached to its interfaces. This means to
check that the role behavior is a projection of the component behavior as ex-
plaines in Section 2.4. When this is done, the semantic interfaces can be used to
check compatibility of static and dynamic links between component instances in
a service or system structure.

Traditional model checking is performed on instance structures and does not
scale well when the structures change and grow. By analyzing each component
type and semantic interface separately and building maps over subtype rela-
tionships, much of the computation intensive work can be done once and for
all at design time and thus reduce the work needed at runtime. In this way,
semantic interfaces provide an enabler for scalable, runtime compatibility checks
in dynamic system structures. This is especially important in systems where
new services and components may be added dynamically, as for instance in the



emerging service oriented computing paradigm, but it is important in any system
with dynamic link structures.

As a simple example consider the case presented in Fig. 7. Here the UserCall
has been extended with a WaitOnBusy feature. More precisely, the Callee role has
been extended so that CalleeW⇒ Callee (extension). In order to fully explore this
extended role behavior, corresponding output must be added to the Caller role as
shown in the CallerW role. As a consequence, the Caller ⇒ CallerW (reduction),
as illustrated in Fig. 8.

Caller CalleeUserCall

CallerW CalleeWUserCallW

ext

extensionreduction
red

Fig. 8. Subtyping relationships for the semantic interfaces of UserCall and UserCallW

Now, consider four components that subscribe to these interfaces as illus-
trated in Fig. 9. Obviously two components that provide dual roles of the same
interface will fully satisfy safety and liveness properties when connected across
the interface. In addition, components providing the Caller role may inter-work
safely with components providing the CalleeW role. However, in this case the
WaitOnBusy goal is not reachable. CallerW and Callee are incompatible, as indi-
cated in Fig. 9.

Incompatible

Y: UserAgent

CalleeB
yi

X: UserAgent

Caller A
xi

W: UserAgent

CalleeWwiBW

Z: UserAgent

CallerW zi AW Compatible {UserCallW.goal} 

UserCallW UserCallW

UserCall UserCall

Compatible {UserCall.goal} 

Compatible {UserCall.goal} 

Fig. 9. Using semantic interfaces



In service providing systems, it is quite common that links between com-
ponents are dynamic. In telecom services for instance, the links between user
agents, terminals and other objects change from call to call. The service features
available at a given instant will normally depend on subscription information,
user preferences, current state and available resources. Therefore, it may be nec-
essary to check the compatibility for each dynamic link that is established. In
our examples this has been omitted, but could be added as checks or possibly
negotiations performed during the Invite phase.

In many telecom services, such as the UserCall presented here, the identity
of the objects playing the service roles are important. The Caller for instance
wants to reach a particular user, not just any user. In other cases the identity is
not so important. The problem is to find some object that can provide a service
or part of a service, in other words to find an object that can play a given role.
This is a case of service discovery.

3.2 Service Discovery

Service discovery has two dimensions:

1. Finding existing component types and instances that can provide a desired
behaviour across a semantic interface. This is needed when a component
with a given semantic interface needs to find and connect to a compati-
ble component over that interface. We call this discovery of complementary
components.

2. Finding new component types and new semantic interfaces that can provide
new or enhanced services, e.g., finding out if an actor can perform new or
enhanced services by obtaining a new type of component. We call this role
learning.

In the following sections we present approaches to these challenges.

3.3 Discovery of Complementary Components

Discovery of complementary components is a mechanism by which a component
can determine what other component types or instances are capable of play-
ing compatible complementary roles. This may be accomplished by specifying a
desired semantic interface and role, given knowledge of collaboration roles and
their subtyping relationships. An example is presented below.

Components are defined with their semantic interfaces in Fig. 9. Given knowl-
edge of the interface role subtyping relationships in Fig. 8, compatibility rela-
tionships and goal opportunities can be analyzed efficiently. Interoperable, com-
plementary components can be found with which services can be performed,
while incompatible components can be avoided:

– X looks for components that are compatible with the UserCall.Callee interface.
This is obviously Y, since it subscribes to that interface. It is also W because
UserCallW.CalleeW is an extension of UserCall.Callee, as shown in Fig. 8.



– Y looks for components that are compatible with the UserCall.Caller inter-
face. Component X can be found, but not Z, since UserCallW.CallerW is
incompatible with UserCall.B.

– Z looks for components compatible with UserCall.CalleeW. Component W
can be found, but not Y, again due to incompatibility.

– W looks for components compatible with UserCall.CallerW. Z is compatible
and can achieve all the goals of UserCallW. X is compatible, but can only
reach the goals of UserCall, i.e., without the WaitOnBusy feature.

Given the subtype relationships calculated at design time, one can search for
components with compatible interfaces, and determine that they satisfy safety
and liveness properties, i.e., have the possibility of reaching service goals when
interacting.

Discovery of complementary components is a static comparison of semantic
interfaces of component types. It does not take the current state of components
into consideration. The objective is not to discover or learn new behavior, an
issue we discuss below.

Note that component interfaces can be classified as either initiating (“client”
side) or offered (“server” side), depending on which interface is designed to take
the first initiative in the collaboration. This can be exploited to simplify the
discovery procedure, since a component is only interested in finding compatible
offered interfaces.

3.4 Role Learning

Given knowledge of what interface roles are deployed in its environment, it may
be desirable for an actor object to learn new behavior so that it can achieve
more service goals when interacting with components towards its environment.
It can for example use a lookup mechanism to search for service components
that give a better match against offered roles, i.e., components that can achieve
more progress.

Given a service brokering function or registry, an actor may perform a re-
quest for a component that can enable it to take part in a new service or a
“better” service than previously. This will require that a new component with
new semantic interfaces is downloaded. A possible collaboration pattern for this
is depicted in Fig. 10.

In Fig. 10, a component X sends a request to component W to play a User-
Call.Callee role. The role request is confirmed, since W is capable of a consistent
collaboration with X. However, in the role confirmation, W supplies a description
of its interface behavior CalleeW. As described earlier, CalleeW extends Callee
with WaitOnBusy functionality. In step 3, X consults a service broker to check
for the existence of a service component that is a better match for CalleeW than
Caller, i.e., a service component that can achieve more service goals. Note that X
supplies a description of its semantic interface Caller. Steps 4 thru 6 result in the
service component CallerW being identified and retrieved from an appropriate



X: UserAgent

provider
:ServiceProvider :ServiceBroker

W: UserAgent

1: RoleRequest
(Callee)

2: RoleConfirm
(CalleeW)

Caller CalleeW

3: L
ooku

p(C
allerW

, C
aller)

4: R
esu

lt(i
dCallerW

, p
rovid

er)

5:
 Im

po
rt

(id
C

al
le

rW
)

6:
 E

xp
or

t
(C

al
le

rW
)

CA’CallerW

A BW

Fig. 10. Role learning pattern used to retrieve a new component

service provider. X has thus improved its functional repertoire by obtaining the
CallerW component.

Whether X casts away the Caller component is an open issue; remember that
CallerW cannot collaborate safely with Callee components, so the Caller com-
ponent may be useful in another context. The example also does not indicate
what component is used in the collaboration with W. Which component to select
can be decided in the Invite phase of the call. Fig. 10 illustrates how this may
be accomplished by replacing the Invite signal by an interaction consisting of a
RoleRequest(requested-role) signal and a RoleConfirm(granted-role) signal. Com-
pared with existing lookup services, the enhancements lie in the description of
the semantic interface, and the learning factor made possible by issuing and
granting role requests [4,12].

4 Conclusions

We have described and illustrated how semantic interfaces, composed of behav-
ior expressions annotated with goals, can be used for the selection of services
and of components while satisfying the liveness properties of the collaboration.
This improvement over the use of static interfaces by existing service discovery
mechanisms prevents the selection of services that would lead to unsatisfactory
or even dangerous behavior. Goals can be attached to behavior models at var-
ious level of abstraction, for instance to UML 2.0 activity, interaction, or state
diagram elements (or respectively to UCM, MSC, and SDL model elements).
Subtyping relationships such as extensions and reductions, together with role-
based projections, enable the efficient comparison between desired collaboration
behavior and available services and components. Semantic interfaces can sup-



port service selection but also more advanced discovery functionalities such as
role learning.

The telephony example used here illustrates in simple terms the description
and selection mechanisms. However, applications for such technology are not
limited to telecommunication. We anticipate practical use in many convergent
services, where information technology services and telecommunication services
unite (e.g., Web services and grid services, applied to many vertical domains).

Due to the well-defined projection relationship between component behav-
ior and semantic interfaces, it is possible to provide tool support for deriving
semantic interfaces, and for checking compatibility between semantic interfaces
and component behaviors. We have developed prototype tools to demonstrate
this. Rather than being an additional burden for the service engineer, semantic
interfaces may be integrated into the service engineering process in ways that
can support both productivity and quality. Scalability of the approach follows
from the relative simplicity and compositional nature of the compatibility checks
needed among component instances. These checks can be limited to checking
compatibility among semantic interfaces, which may be pre-calculated for com-
ponent types and interface types at design time.

Service discovery as outlined here relies on well-defined interface names and
maps over inheritance relations between semantic interfaces. It also relies on a
common understanding of goals and the relationship between goals, services and
service features. One way to achieve this would be to define a suitable ontology
over goals, services, and features, using approaches suggested in the semantic
Web community [15]. In order to enable service discovery across different service
providers, this ontology must be shared. We plan to investigate how emerging
standards like the Web Ontology Language (OWL) [18] could improve the de-
scription of semantic interfaces and be used to allow matches across different
domains.

Acknowledgments

This research was supported by Telenor R&D and by the Natural Sciences and
Engineering Research Council of Canada, through its programs of Strategic
Grants and Discovery Grants.

References

1. Abadi, M. and Lamport, L.: Conjoining specifications. ACM Transactions on Pro-
gramming Languages & Systems, vol.17, no.3, May 1995, 507-534.

2. Black, A., Hutchinson, N., Jul, E., Levy, H., and Carter, L.: Distribution and
Abstract Types in Emerald. IEEE Trans. on Software Engineering, Vol. SE-13, no.
1, January 1987, 65–76.

3. Bettstetter, C. and Renner, C.: A Comparison of Service Discovery Protocols and
Implementation of the Service Location Protocol. Proc. EUNICE Open European
Summer School, Twente, Netherlands, Sept 13-15, 2000.



4. Bræk, R., Husa, K.E., and Melby, G.: ServiceFrame: WhitePaper. Ericsson Norarc,
2002.
http://www.item.ntnu.no/lab/nettint1/ServiceFrame/ServiceFrame.html

5. Bræk, R. and Haugen, Ø.: Engineering Real Time Systems. An Object Oriented
Methodology using SDL. Hemel Hempstead, Prentice Hall, 1993.

6. Brinksma, E. and Scollo, G.: LOTOS specifications, their implementations and
their tests. Protocol Specification, Testing and Verification VI (IFIP Workshop),
Montreal, 1986, North Holland, 349–360.

7. Drissi, J. and Bochmann, G.v.: Submodule construction tool. M. Mohammadian
(Ed.), Proc. Int. Conf. on Computational Intelligence for Modelling, Control and
Automation, Vienna, Feb. 1999, IOS Press, 319–324.

8. Floch, J.: Towards Plug-and-Play Services: Design and Validation using Roles.
Ph.D. thesis 2003:47 NTNU, Norway, 2003.

9. Gouda, M.G. and Yu, Y.-T.: Synthesis of communicating Finite State Machines
with guaranteed progress. IEEE Trans. on Communications, vol. 32, No. 7, July
1984, 779–788.

10. Hopcroft, J.E., and Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley Publishing Company, 1979.

11. Lynch, N.A. and Tuttle, M.R.: An introduction to input/output automata. CWI
Quarterly, 2(3), 1989, 219–246.

12. Melby, G. and Bræk, R.: Delivery of convergent telecom services on J2EE plat-
forms. Int. Conf. on Intelligence in Service Delivery Networks, ICIN, Bordeaux,
France, October 2004.

13. OASIS: Universal Description Discovery & Integration (UDDI), Version 3.02,
February 2005. http://www.oasis-open.org/committees/uddi-spec

14. OMG: UML 2.0 specifications. http://www.omg.org/uml
15. Paolucci, M., Kawamura, T., Payne, T.R., and Sycara, K.P.: Semantic Matching of

Web Services Capabilities. I. Horrocks, J.A. Hendler (Eds.): The Semantic Web-
ISWC 2002, First International Semantic Web Conference, Sardinia, Italy, June
9-12, 2002, Proceedings. Lecture Notes in Computer Science 2342, Springer 2002,
333–347

16. Singh, M.P. and Huhns, M.N.: Service-Oriented Computing: Semantics, Processes,
Agents. John Wiley & Sons, 2005.

17. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1.
March 2001. http://www.w3.org/TR/wsdl

18. World Wide Web Consortium: Web Ontology Language (OWL). February 2004.
http://www.w3.org/2004/OWL/


